CHAPTER 1-

SOME BASIC CONCEPTS IN CHEMISTRY

CLASS XI

Calculate the number of atoms in each of the following:
(i) 52 moles of Ar
(ii) 52 u of He
(iii) 52 g of He .

Calculate the number of moles in each of the following:
i. 49 grams of sulphuric acid
ii. 44.8 litres of carbon dioxide at STP
iii. 3.011×10^{23} molecules of oxygen
(i) 1 mole of Ar contains 6.022×10^{23} atoms
52 moles of Ar contains $52 \times 6.022 \times 10^{23}$
$=3.13 \times 10^{25}$ atoms
(ii) $4 u$ of $\mathrm{He}=1$ atom

52 u of He $=\frac{1}{4} \times 52-13$ atoms
(iii) 4 g of He contains 6.022×10^{23} atoms
$52 g$ of He contains $\frac{6.022 \times 10^{23}}{4} \times 52$

$$
=7.83 \times 10^{24} \text { atoms }
$$

i. 1 mole of $\mathrm{H}_{2} \mathrm{SO}_{4}=98 \mathrm{~g}$

$$
\mathrm{x} \text { mole }=49 \mathrm{~g}
$$

$$
\mathrm{x}=0.5 \mathrm{moles}
$$

ii. 1 mole of gas at $\mathrm{STP}=22.4 \mathrm{~L}$

$$
x \text { mole }=44.8 \mathrm{~L}
$$

$\mathrm{x}=2 \mathrm{moles}$
iii. 1 mole of oxygen $=6.022 \times 10^{23}$ molecules
x moles $=3.011 \times 10^{23}$ molecules

$$
\mathrm{x}=0.5 \mathrm{moles}
$$

Questions

(i) Calculate the mass of a carbon atom in Kg
(ii) Calculate the mass of CO_{2} that contains same number of molecules as there are in 3.4 g of ammonia, NH_{3}

Percentage composition

The mass percentage of each constituent element present in any compound is called its percentage composition

$$
\% \text { mass of element }=\frac{\text { mass of element }}{\text { total mass of compound }} \times 100
$$

Q. Calculate the mass percent of different elements present in sodium sulphate $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Solution: Molecular mass of $\mathrm{Na}_{2} \mathrm{SO}_{4}=142 \mathrm{u}$.

$$
\begin{aligned}
& \text { Mass } \% \text { of sodium }=\frac{2 \times 23}{142} \times 100=\frac{46}{142} \times 100 \\
& \\
& =32.39 \% \\
& \text { Mass } \% \text { of sulphur }=\frac{32}{142} \times 100=22.53 \% \\
& \text { Mass \% of oxygen }=\frac{4 \times 16}{142} \times 100=45.07 \%
\end{aligned}
$$

The molecular formula shows the exact number of different types of atoms present in a molecule of a compound. E.g. $\mathrm{C}_{6} \mathrm{H}_{6}$ is the molecular formula of benzene.

Empirical Formula

An empirical formula represents the simplest whole number ratio of various atoms present in a compound. E.g. CH is the empirical formula of benzene.

Compound	Molecular Formula	Empirical Formula
Water	$\mathrm{H}_{2} \mathrm{O}$	$\mathrm{H}_{2} \mathrm{O}$
Hydrogen peroxide	$\mathrm{H}_{2} \mathrm{O}_{2}$	HO
Ethane	$\mathrm{C}_{2} \mathrm{H}_{6}$	CH_{3}
Glucose	$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$	$\mathrm{CH}_{2} \mathrm{O}$

Relationship between empirical and molecular formulae: MF= n (EF)
Vapour density-The ratio of the density of a gas to the density of hydrogen at the same temperature and pressure. Molar mass $=2 \times$ vapour density
Q. Calculate the empirical formula of a compound containing $54.54 \% \mathrm{C}, 9.09 \% \mathrm{H}$ and rest oxygen. Also calculate the molecular formula , if its molar mass is 88 u .

Element	$\%$	Relative number of moles	Simple ratio
C	54.54	$54.54 / 12=4.53$	$4.53 / 2.27=2$
H	9.09	$9.09 / 1=9.09$	$9.09 / 2.27=4$
O	36.36	$36.36 / 16=2.27$	$2.27 / 2.27=1$

$$
\mathrm{EF}=\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}
$$

$E F$ mass $=12 \times 2+1 \times 4+16 \times 1=44$
$\mathrm{n}=$ Molar mass $/$ EF mass $=44 / 44=1$

$$
\begin{gathered}
\mathrm{MF}=\mathrm{n} \times(\mathrm{EF})=2 \times\left(\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}\right) \\
\mathrm{MF}=\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}
\end{gathered}
$$

Questions

(i) An organic compound on analysis was found to contain 57.8% of carbon, 3.6% of hydrogen and the rest oxygen. If its vapour density is 83 find its empirical and molecular formula.
(ii) An organic compound on analysis was found to contain 1.8 g of carbon, 0.6 g of hydrogen and 2.4 g of oxygen. Find its empirical formula.
Q. A welding fuel gas contains carbon and hydrogen only. Burning a small sample of it in oxygen gives 3.38 g carbon dioxide, 0.690 g of water and no other products. A volume of 10.0 L (measured at STP) of this welding gas is found to weigh 11.6 g . Calculate
(i) empirical formula,
(ii) molar mass of the gas, and
(iii) molecular formula.

Element	Amount	Ratio	Simple ratio
C	$0.92 / 12$	0.076	1
H	$0.076 / 1$	0.076	1

$\mathrm{EF}=\mathrm{CH} \quad \mathrm{EF}$ mass $=12+1=13$

44 g of CO_{2} contains 12 g carbon 3.38 g of CO_{2} will contain xg of C $\mathrm{x}=0.92 \mathrm{~g}$

18 g of $\mathrm{H}_{2} \mathrm{O}$ contains 2 g H
0.690 g of $\mathrm{H}_{2} \mathrm{O}$ will contain xg of H $\mathrm{x}=0.076 \mathrm{~g}$

10L weighs 11.6 g
22.4 L will weigh $\mathrm{xg} \quad \mathrm{x}=26 \mathrm{~g}$ [molar mass]
$\mathrm{n}=\mathrm{EF}$ mass/Molar mass=26/13=2
$\mathrm{MF}=\mathrm{n}(\mathrm{EF})=2(\mathrm{CH}) \quad$ thus: $\mathrm{MF}=\mathrm{C}_{2} \mathrm{H}_{2}$

Stoichiometry

$$
\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

- One mole of $\mathrm{CH}_{4}(\mathrm{~g})$ reacts with two moles of $\mathrm{O}_{2}(\mathrm{~g})$ to give one mole of $\mathrm{CO}_{2}(\mathrm{~g})$ and two moles of $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
- One molecule of $\mathrm{CH}_{4}(\mathrm{~g})$ reacts with 2 molecules of $\mathrm{O}_{2}(\mathrm{~g})$ to give one molecule of $\mathrm{CO}_{2}(\mathrm{~g})$ and 2 molecules of $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
- 22.4 L of $\mathrm{CH}_{4}(\mathrm{~g})$ reacts with 44.8 L of $\mathrm{O}_{2}(\mathrm{~g})$ to give 22.4 L of $\mathrm{CO}_{2}(\mathrm{~g})$ and 44.8 L of $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
- 16 g of $\mathrm{CH}_{4}(\mathrm{~g})$ reacts with 64 g of $\mathrm{O}_{2}(\mathrm{~g})$ to give 44 g of $\mathrm{CO}_{2}(\mathrm{~g})$ and 36 g of $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$.
Q. Calculate the amount of water (g) produced by the combustion of 16 g of methane.

Solution : 16 g of CH_{4} corresponds to one mole.
1 mol of $\mathrm{CH}_{4}(\mathrm{~g})$ gives 2 mol of $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
16 g of $\mathrm{CH}_{4}=2 \times 18=36 \mathrm{~g}$
Therefore $36 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$
Q. How many moles of methane are required to produce $22 \mathrm{~g} \mathrm{CO}_{2}(\mathrm{~g})$ after combustion?

Solution : 16 g methane gives 44 g of CO_{2}
xg methane will give 22 g of CO_{2}
$x=8 \mathrm{~g}$ ie $8 / 16$ moles $=0.5$ moles
Q. How much copper can be obtained from 100 g of copper sulphate $\left(\mathrm{CuSO}_{4}\right)$?

Solution:

Molar mass of $\mathrm{CuSO}_{4}=63.5+32+4 \times 16=63.5+32+64=159.5 \mathrm{~g}$
159.5 g of CuSO_{4} contains copper $=63.5 \mathrm{~g}$

100 g of CuSO_{4} contains copper $=\mathrm{xg}$
$\mathrm{x}=39.81 \mathrm{~g}$
Q. Chlorine is prepared in the laboratory by treating manganese dioxide $\left(\mathrm{MnO}_{2}\right)$ with aqueous hydrochloric acid according to the reaction
$4 \mathrm{HCI}_{(\mathrm{aq})}+\mathrm{MnO}_{2(\mathrm{~s})} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{I})}+\mathrm{MnCI}_{2(\mathrm{aq})}+\mathrm{Cl}_{2(\mathrm{~g})}$
How many grams of HCI react with 5.0 g of manganese dioxide? [$\mathrm{Mn}=55, \mathrm{O}=16$]

Solution:

Limiting Reagent

The reactant which gets consumed completely or limits the amount of product formed is known as limiting reagent.
Q. Calculate the amount of carbon dioxide that could be produced when
(i) 1 mole of carbon is burnt in air.
(ii) 1 mole of carbon is burnt in 16 g of dioxygen.
(iii) 2 moles of carbon are burnt in 16 g of dioxygen.

Solution:

(i) Hence, 1 mole of C produces 44 g of CO_{2}

(ii)Hence, O_{2} is the limiting reagent. $32 \mathrm{~g} \mathrm{O}_{2}$ reacts with C to produce 44 g of CO_{2} $16 \mathrm{~g} \mathrm{O}_{2}$ reacts with C to produce
(iii) $64 \mathrm{~g} \mathrm{O}_{2}$ reacts with C to produce 88 g of CO_{2} $16 \mathrm{~g} \mathrm{O}_{2}$ reacts with C to produce $=\mathrm{xg}$

$$
x=22 g
$$

$$
\underset{12 \mathrm{~g} \mathrm{32}}{\mathrm{C}}+\underset{44 \mathrm{~g}}{\mathrm{O}_{2}}
$$

$$
\begin{gathered}
2 \mathrm{C}+2 \mathrm{O}_{2} \longrightarrow 2 \mathrm{CO}_{2} \\
24 \mathrm{~g}+\mathrm{g}+\mathrm{g}
\end{gathered}
$$

Q. Dinitrogen and dihydrogen react with each other to produce ammonia according to the following chemical equation:
$\mathrm{N}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$
(i) Calculate the mass of ammonia produced if $2.00 \times 10^{3} \mathrm{~g}$ dinitrogen reacts with $1.00 \times 10^{3} \mathrm{~g}$ of dihydrogen.
(ii) Will any of the two reactants remain unreacted?
(iii) If yes, which one and what would be its mass?

Moles of $\mathrm{N}_{2}=\frac{2.00 \times 10^{3}}{28}=71.43$,
Moles of $\mathrm{H}_{2}=\frac{1.00 \times 10^{3}}{2}=500$
1 mole of N_{2} required 3 moles of H_{2} from above equation.
$\therefore \quad 71.43$ mole of N_{2} will require 3×71.43
$=214.29$ mole of H_{2}
But moles of H_{2} actually present $=500$ moles Thus, H_{2} is in excess and will remain unreacted and N_{2} is limiting reagent.
(1) 1 mole of N_{2} reacts with H_{2} to form NH_{3}
$=2$ moles
71.43 moles of N_{2} react with H_{2} to form

$$
\mathrm{NH}_{3}=\frac{2}{1} \times 71.43=142.86 \text { moles }
$$

Mass of NH_{3} produced $=142.86 \times 17$

$$
=2428.6 \mathrm{~g}
$$

(ii) Hydrogen will remain unreacted.
(iii) Moles of H_{2} remaining unreacted

$$
=500-214.29=285.71 \text { moles }
$$

Mass of H_{2} left unreacted $=285.71 \times 2$

$$
=571.42 \mathrm{~g}
$$

Reactions in Solutions

Concentration

The concentration of a solution can be expressed in the following ways-

1. Mass Percent
2. Volume percent
3. Molarity
4. Molality
5. Mole Fraction
6. Mass Percent is the mass of the solute in grams per 100 grams of the solution.

$$
\text { Mass } \% \text { of the solute }=\frac{\text { Mass of the solute }}{\text { Mass of the solution }} \times 100
$$

2. Volume percent is the number of units of volume of the solute per 100 units of the volume of solution.

$$
\text { Volume } \% \text { of the solute }=\frac{\text { Volume of the solute }}{\text { Volume of the solution }} \times 100
$$

3. Molarity

* the number of moles of solute dissolved per litre of the solution.

* It is denoted by the symbol M.
* Measurements in Molarity can change with the change in temperature because solutions expand or contract accordingly
* To calculate the volume of a definite solution required to prepare solution of other molarity, the following equation is used

$$
M_{1} V_{1}=M_{2} V_{2}
$$

where $\mathrm{M}_{1}=$ initial molarity, $\mathrm{M}_{2}=$ molarity of the new solution, $\mathrm{V}_{1}=$ initial volume and $\mathrm{V}_{2}=$ volume of the new solution.

* When density and molar mass is known molarity is calculated as

$$
M=\underline{\%} \times \mathrm{d} \times 10
$$

mass
Q. Calculate the molarity of NaOH in the solution prepared by dissolving its 4 g in enough water to form 250 mL of the solution.

$$
M=\frac{W}{M \times V} \mathrm{mo} / \mathrm{L}=\frac{4 \times 1000}{40 \times 250}=0.4 \mathrm{~mol} / \mathrm{L}
$$

Q. Commercially available concentrated HCl contains $38 \% \mathrm{HCl}$ by mass. What is its molarity, if its density is $1.19 \mathrm{~g} / \mathrm{cm}^{3}$? $[\mathrm{H}=1, \mathrm{Cl}=35.5]$

Solution:

$\mathrm{M}=\%$.d.10/Molar mass
$=38 \times 1.19 \times 10 / 36.5$
$=12.38 \mathrm{M}$
Q. Calculate the molarity of 30 mL of $0.5 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ when diluted to 500 mL

Solution:
$M_{1} V_{1}=M_{2} V_{2}$
$0.5 \times 30 / 1000=\mathrm{M}_{2} \times 500 / 1000$
$\mathrm{M}_{2}=0.03$ moles $/ \mathrm{L}$

4. Molality

the number of moles of solute dissolved per $1000 \mathrm{~g}(1 \mathrm{~kg})$ of solvent.

* Molality is expressed as ' m '.
* It is independent of temperature as mass of solvent is independent of temperature.

molality $=\frac{\text { moles of solute }}{}$ mass of solvent (kg)

Q. What is the molality of a solution containing 5.0 g NaCl dissolved in 25.0 g water?

Solution:

$$
\text { Mollity }=\frac{\text { Moles ofttre solute }}{\text { We of fovent(ngm) }} \times 1000 \quad \mathrm{~m}=\frac{5 \times 1000}{58.5 \times 25}=3.42 \mathrm{moles} / \mathrm{kg}
$$

Q. Calculate the mass of urea $\left(\mathrm{NH}_{2} \mathrm{CONH}_{2}\right)$ required in making 2.5 kg of 0.25 molal aqueous solution. [Atomic mass of $\mathrm{N}=14, \mathrm{O}=16, \mathrm{C}=12, \mathrm{H}=1$]
Solution:

$$
\text { molality }=\frac{\text { moles of solute }}{\text { mass of solvent }(\mathrm{kg})}
$$

$0.25=\frac{\text { moles }}{2.5}$
moles $=0.625$ mole

Mass of urea $=$ moles \times molar mass $=0.625(60)=37.5 \mathrm{~g}$

5. Mole Fraction

The ratio of number of moles of one component to the total number of moles of all the components present in the solution.

* It is expressed as ' χ '.
* It has no units.

$$
\text { Mole fraction of } \mathrm{A}=x_{A}=\frac{\mathrm{n}_{A}}{\mathrm{n}_{A}+\mathrm{n}_{B}}
$$

* $\chi_{A}+\chi_{B}=1$

$$
\text { Mole fraction of } \mathrm{B}=x_{B}=\frac{\mathrm{n}_{B}}{\mathrm{n}_{A}+\mathrm{n}_{B}}
$$

Q.A solution is prepared by mixing 25.0 g of water, $\mathrm{H}_{2} \mathrm{O}$, and 25.0 g of ethanol, $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$. Determine the mole fractions of each substance.
Solution:

$$
\begin{aligned}
& \text { Moles of } \mathrm{H}_{2} \mathrm{O}: 25.0 \mathrm{~g} / 18.0 \mathrm{~g} / \mathrm{mol}=1.34 \mathrm{~mol} \\
& \text { moles of } \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}: 25.0 \mathrm{~g} / 46.07 \mathrm{~g} / \mathrm{mol}=0.543 \mathrm{~mol} \\
& \chi_{\mathrm{H} 2 \mathrm{O}}: 1.34 \mathrm{~mol} /(1.34 \mathrm{~mol}+0.543 \mathrm{~mol})=0.71 \\
& \chi_{\mathrm{C} 2 \mathrm{H} 5 \mathrm{OH}}: 0.543 \mathrm{~mol} /(1.34 \mathrm{~mol}+0.543 \mathrm{~mol})=0.29
\end{aligned}
$$

Q. A tank is charged with a mixture of $1.0 \times 10^{3} \mathrm{~mol}$ of oxygen and $4.5 \times 10^{3} \mathrm{~mol}$ of helium. Calculate the mole fraction of each gas in the mixture.

Solution:

Mole fraction can be calculated as

$$
\begin{aligned}
& \chi_{\mathrm{He}}=4.5 \times 10^{3} \mathrm{~mol} /\left(4.5 \times 10^{3} \mathrm{~mol}+1.0 \times 10^{3} \mathrm{~mol}\right) \\
& \chi_{\mathrm{He}}=4.5 \mathrm{~mol} / 5.5 \mathrm{~mol} \\
& \chi_{\mathrm{He}}=0.82 \\
& \chi_{\mathrm{O} 2}=1.0 \times 10^{3} \mathrm{~mol} /\left(4.5 \times 10^{3} \mathrm{~mol}+1.0 \times 10^{3} \mathrm{~mol}\right) \\
& \chi_{\mathrm{O} 2}=1.0 \times 10^{3} / 5.5 \times 10^{3} \\
& \chi_{\mathrm{O} 2}=0.18
\end{aligned}
$$

